














FIG 5 Effects of QStatin on SmcR regulon expression. (a) The fold changes in expression of each gene in
either the QStatin-treated WT or DMSO-treated ΔsmcR mutant strain are presented relative to those in the
DMSO-treated WT strain. Error bars represent the SD of results from three independent experiments. (b) The
fold changes of whole transcriptome expression in the DMSO-treated ΔsmcR mutant, QStatin-treated
ΔsmcR mutant, and QStatin-treated WT biofilms relative to that in the DMSO-treated WT biofilm were
examined by RNA sequencing. Among the genes differentially expressed in DMSO-treated ΔsmcR mutant
biofilm relative to DMSO-treated WT biofilm (P � 0.05; fold change, �2), 19 genes potentially involved in
virulence, motility, and biofilm formation/dispersion were selected. Fold changes of the expression of 19
genes in the indicated samples relative to those in the DMSO-treated WT biofilm are shown in the heat map
with colors representing the log2 RPKM ratio. Locus tags of genes in the V. vulnificus MO6-24/O genome
(GenBank accession numbers CP002469.1 and CP002470.1) and their gene products are shown. Please refer
to Fig. S4 and Data Set S1 for expression changes in other genes. (c) Principal-component analysis of the
whole-gene expression profiles of the samples. Each symbol represents the transcriptome of a single
sample from two biological replicates per sample group.
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nificus, V. harveyi, or V. parahaemolyticus, without affecting the viability of bacteria
(Fig. 6d to f; see also Fig. S1c and S5d to f). No such virulence attenuation was observed
with the V. vulnificus ΔsmcR mutant, demonstrating that virulence attenuation by
QStatin is SmcR mediated (Fig. 6d). Remarkably, V. harveyi, a known shrimp pathogen,
showed the most significant virulence attenuation; the survival rate of the nauplii
increased from 35.7% � 6.8% (DMSO) to 85.5% � 8.1% (QStatin).

DISCUSSION

Diverse strategies have been explored to control QS, including inhibition of AI
synthesis, degradation of AI, and interference with AI detection (43). However, certain
Vibrio species produce different kinds of AIs and sense them using specific cognate
receptors (32, 44). Thus, simultaneous inhibition of all AI-specific pathways is necessary
to block Vibrio QS. However, LuxRVh homologues function as master QS regulators at
the center of the Vibrio QS pathway (25). Moreover, these homologues show high
sequence similarity and may have structural similarity, making them the most attractive
targets for Vibrio QS inhibition. QStatin inhibited SmcR activity with an EC50 in the range
of hundreds of nanomolars and markedly affected QS in all Vibrio species examined. Its
potent and broad-spectrum activity would be particularly important in practical set-
tings, since multiple Vibrio species can cause vibriosis in aquaculture. Actually, the unit
of Vibrio pathogenesis in naturally infected oysters is the Vibrio population and not the
clone (45).

Some Vibrio species opportunistically infect human and cause acute diseases using
virulence factors such as cholera toxin, toxin coregulated pili (Tcp), and hemolysin (1).
Because QS represses the expression of such virulence factors (33, 46), pro-QS strategies

FIG 6 QStatin is a pan-QS inhibitor attenuating the virulence of pathogenic Vibrio species. (a) QStatin inhibits V. vulnificus
biofilm dispersion. WT and ΔsmcR mutant strains were allowed to form biofilms in the presence of QStatin (20 �M) or
DMSO (0.04%) for the indicated times at 30°C. Biofilm mass was then measured by crystal violet staining. Data are
expressed as means � SD of results from two independent experiments. Statistical significance was determined by
one-way ANOVA (*, P � 0.05). (b) QStatin inhibits V. harveyi bioluminescence. Early-exponential-phase V. harveyi cultures
were transferred to microtiter plates, treated with QStatin (20 �M) or DMSO (2%), and further incubated at 30°C. Vertical
and horizontal error bars represent the SD of the RLU and A600 values, respectively, from three independent experiments.
(c) QStatin affects V. parahaemolyticus colony opacity. One microliter of an overnight V. parahaemolyticus culture was
spotted onto LBS agar plates supplemented with QStatin (500 �M) or DMSO (2%). Three different cultures were spotted
and monitored after growth at 30°C for 24 h. (d to f) Brine shrimp nauplii were challenged with V. vulnificus (d), V. harveyi
(e), or V. parahaemolyticus (f) in the presence of QStatin (20 �M) or DMSO (0.04%). After 60 h, surviving shrimp were
counted. Error bars represent the SD of the survival rates from three independent experiments. Statistical significance was
determined by one-way ANOVA (d) or Student’s t test (e and f) (**, P � 0.005; *, P � 0.05; ns, not significant).
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have been proposed to treat patients (47, 48). However, this does not seem to be the
case for aquatic animals, the more relevant natural hosts for Vibrio species (17). Indeed,
virulence of V. vulnificus against the shrimp was considerably attenuated by QStatin
(Fig. 6d) despite an increase in the expression of the hemolysin gene (Fig. 5b). This
apparently conflicting result is not unprecedented, because a V. harveyi QS mutant also
exhibits reduced virulence to brine shrimp despite expressing more type 3 secretion
system (T3SS) components (17, 49). QStatin decreased the expression of many other
virulence factors (Fig. 5b), including exoprotease/metalloprotease (VvpE) (19), a spike
protein of T6SS apparatus (VgrG) (50), and a phenazine biosynthesis protein (PhzF) (51).
Thus, these virulence factors seem to be more critical than hemolysin or T3SS in Vibrio
pathogenesis in aquatic environments.

Furthermore, the genes governing motility (FlaE), chemotaxis (methyl-accepting che-
motaxis proteins), and biofilm formation/dispersion (CabBC- and c-diGMP-regulating en-
zymes), which can affect both virulence and environmental adaptation of bacteria
(52–54), were also significantly dysregulated by QStatin (Fig. 5b). In fact, QS has been
reported to contribute to bacterial persistence and survival in the presence of grazing
predators and bacteriophages in natural environments (20, 21, 55–57). Therefore, it is
less likely that QStatin causes the pathogenic vibrios to bloom in the relevant environ-
ments, although the shrimp were persistently infected by vibrios under our gnotobiotic
experimental conditions.

To the best of our knowledge, QStatin is the first ligand to have been shown to bind
to the putative ligand-binding pocket of LuxRVh homologues. Furthermore, our results
provide new insights into the Vibrio QS. First, the tight binding of QStatin to the
conserved binding pocket suggests the presence of an authentic natural ligand regu-
lating LuxRVh homologues. If it exists, such a ligand might have pharmacophore
properties similar to those of QStatin. In this regard, it is fascinating that halogenated
furanones, which bind to LuxRVh and affect its DNA-binding activity, are produced by
the marine alga Delisea pulchra (58). Future examination of furanone binding to the
ligand-binding pocket of LuxRVh homologues would reveal the relationship between
Vibrio species and their ecologic neighborhoods at the molecular level.

Second, the results provide new perspectives into how LuxRVh homologues directly
regulate many different target genes. In fact, the members of the TetR family of
transcriptional regulators are known to bind to one or two promoters containing a
symmetrical palindrome sequence (31). In contrast, LuxRVh homologues bind to hun-
dreds of promoters harboring imperfect, asymmetrical consensus sequences in which
one half is more conserved than the other half (37, 59–61). Thus, LuxRVh homologues
are speculated to have evolved structural flexibility, allowing it to bind to less-
conserved, diverse sequences (61). In the present study, we showed that QStatin
reduced the structural flexibility of SmcR (Fig. 3e), altering its DNA-binding properties
in vitro (Fig. 4a to e) and thereby dysregulating gene expression in vivo (Fig. 5; see also
Fig. S4 in the supplemental material). Notably, QStatin affects the flexibility of the
glycine-rich hinge region of apo-SmcR (Fig. 3e). Consistent with this, a previous study
revealed that a natural variant of HapR with a mutation (G39D) in the glycine-rich hinge
region is defective with respect to target promoter regulation (62). Thus, our results
provide direct evidence that flexibility is an essential molecular feature of LuxRVh

homologues, permitting them to function as global transcriptional regulators. If QStatin
were to bind to LuxRVh homologues, they would become less flexible, resulting in
nonfunctional binding to target promoter DNAs (Fig. 4c to f and 7). One possible
explanation for this nonfunctionality is that the rigid LuxRVh homologues could not
interact properly with other transcriptional regulators required for regulation of target
promoters. Indeed, markedly rigid residues within QStatin-bound SmcR include Leu139
and Asn142, which are predicted to be essential for LuxRVh-RNA polymerase interac-
tions (61). Since one monomer of the SmcR dimer is more flexible than the other
(Fig. 3e), we propose a model in which the less flexible monomer binds to the more
conserved half and the other, more flexible monomer is “induced-fitted” into the less
conserved half of the consensus sequence for functional binding (Fig. 7).
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In conclusion, we identified QStatin as a potent pan-QS inhibitor that selectively
inhibits the activity of LuxRVh homologues in Vibrio species. Since QStatin showed a
marked antivirulence effect with no direct bactericidal or bacteriostatic activity, it could
be used to control vibriosis in aquacultures while avoiding the resistance associated
with other antimicrobial agents. The data revealing the structure of the SmcR-QStatin
complex should help us to design a more effective Vibrio QS inhibitor in the future.
Importantly, the effect of QStatin on the persistence and survival of Vibrio species in real
marine environments needs to be investigated, as well as any eventual mechanisms of
QStatin resistance.

MATERIALS AND METHODS
Bacterial strains, plasmids, and culture media. The strains and plasmids used in this study are

listed in Table S1 in the supplemental material. E. coli and Vibrio strains were grown in Luria-Bertani
medium (LB) at 37°C and in LB supplemented with 2.0% (wt/vol) NaCl (LBS) at 30°C, respectively, with
appropriate antibiotics. The small-molecule library was generously provided by the Korea Chemical Bank
(http://eng.chembank.org/), and the molecules were dissolved in DMSO. Hit molecules were either
purchased from ChemDiv (San Diego, CA) or synthesized as described below. Other chemicals were
purchased from Sigma-Aldrich (St. Louis, MO).

High-throughput screening. E. coli DH5� was cotransformed with pBSS-WT, carrying the arabinose-
inducible smcR gene, and with pBS0918, a reporter plasmid carrying the SmcR-repressed promoter of
VVMO6_03194 (PVVMO6_03194) (37) fused to the lux operon. The resulting strain was cultured to an A600 of
0.5 in fresh LB containing 0.0002% (wt/vol) L-arabinose, and then 100 �l of culture was transferred to
each well of a 96-well microtiter plate (Optilux; BD Falcon, Bedford, MA) containing a 20 �M concen-
tration of each molecule or 2% DMSO. The plates were incubated at 37°C with shaking, and luminescence
and growth (A600) were measured three times at 1.5-h intervals using an Infinite M200 microplate reader
(Tecan, Männedorf, Switzerland). RLU was calculated by dividing the luminescence value by the A600

value (13). Information related to the high-throughput screening is summarized in Table S2.
Verification and determination of the EC50 of hit molecules. The plasmid pBB1 carrying the

LuxRVh homologue-activated lux operon (39) was conjugally transferred into the V. vulnificus wild-type
(WT) strain, the ΔsmcR mutant, or the ΔluxO mutant (63). These V. vulnificus reporter strains were grown
overnight, diluted 1:1,000 in fresh LBS, and treated with hit molecules as described above. RLU values
were calculated every hour. To determine the EC50, QStatin (10�12 to 10�4 M) or 2% DMSO as a control
was added to the V. vulnificus WT reporter strain and RLU was measured after 5 h. The percentage of

FIG 7 Proposed molecular mechanism underlying QStatin-induced attenuation of virulence in pathogenic Vibrio
species. Due to its flexibility, apo-LuxRVh can functionally interact with various target promoter DNAs, which contain
either symmetrical palindrome consensus binding sequences (represented by blue boxes with inverted arrows) or
asymmetrical imperfect binding sequences (represented by blue boxes and different colored boxes) via an
“induced-fit” mechanism. Virulence-related genes are differentially regulated by LuxRVh-mediated QS, making the
vibrios fully virulent against aquatic hosts. In contrast, QStatin-induced reduction of LuxRVh flexibility causes
nonfunctional interactions with its target promoter DNAs and results in dysregulation of the LuxRVh regulon. These
events eventually attenuate the virulence of Vibrio species against aquatic hosts. LBD, ligand-binding domain; DBD,
DNA-binding domain.
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SmcR activity of the sample at a given concentration of QStatin was determined using the following
equation: percent SmcR activity � sample RLU/control RLU � 100. The EC50 of QStatin (the concentration
reducing the SmcR activity to 50%) was calculated from a plot of the percentages of SmcR activity versus
QStatin concentrations using GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego, CA).

Determination of total protease, elastase, and �-galactosidase activities controlled by SmcR.
Total protease and elastase activities were determined as previously described (64), except that the
V. vulnificus WT and ΔsmcR mutant strains were treated with QStatin (5, 20, or 50 �M) or DMSO (0.02%)
as described above. To confirm the reduced expression of elastase gene, V. vulnificus DH0602 containing
SmcR-expressing plasmid pBSJH-WT (29) was treated with 20 �M QStatin for 16 h and then its
�-galactosidase activity was measured as described previously (29). The amounts of cellular SmcR and
DnaK were determined by immunoblotting using rat anti-SmcR polyclonal antiserum and mouse
anti-E. coli DnaK monoclonal antibody (Enzo Lifesciences, Farmingdale, NY), respectively, with alkaline
phosphatase or horseradish peroxidase (HRP)-conjugated anti-rat or anti-mouse IgG antibody, as de-
scribed previously (13).

Protein purification, crystallization, data collection, and structural analysis. Native or selenome-
thionine (SeMet)-substituted SmcR was expressed and purified as described previously (29). High-quality
SeMet-substituted SmcR crystals were produced under the following optimized conditions: 0.2 M Li2SO4,
7% polyethylene glycol (PEG) 3000, and 0.1 M imidazole (pH 8.0). Crystals appeared within 2 days and
grew for a further 5 days. To obtain SmcR crystals complexed with QStatin, SmcR crystals were soaked
for 30 min in a solution containing 2.5 mM QStatin, 0.2 M Li2SO4, 7% PEG 3000, 0.1 M imidazole (pH 8.0),
and 10% glycerol. The crystals were then placed under a nitrogen gas stream (at �173°C). Diffraction
data were collected at a resolution of 2.1 Å at beamline 7A (Pohang Accelerator Laboratory, Pohang,
South Korea) and processed using the HKL2000 program suite (65). The structure of the SmcR-QStatin
complex was solved using the molecular replacement method and the MOLREP program (66), with the
SmcR structure (PDB identifier [ID]: 3KZ9) used as a template. The structure was then revised using COOT
(67) and refined using REFMAC5 (68). The refinement process included the translation-liberation-screw
procedure. The crystallographic data are summarized in Table S3.

EMSA and ChIP analysis. EMSA of SmcR binding to the vvpE promoter region was performed as
described previously (29), except that QStatin or a random molecule from the library was added to the
reaction sample. ChIP analysis was performed as described elsewhere (61), with some modifications.
Briefly, the ΔsmcR strain or a mutant strain expressing FLAG-smcR was grown for 16 h in the presence
of either QStatin (20 �M) or DMSO (0.02%). After cross-linking with formaldehyde occurred, cells were
lysed and sonicated to shear the genomic DNA. Clarified lysates were incubated for 6 h at 4°C with
anti-FLAG M2 magnetic beads (Sigma-Aldrich). After washing was performed, the immunoprecipitated
complexes were eluted and DNAs were reverse cross-linked. The presence of target promoter DNAs was
analyzed by PCR.

ITC analysis. For ITC analysis of the SmcR-QStatin interaction, purified SmcR was dialyzed extensively
against buffer (50 mM Tris [pH 7.0], 300 mM NaCl, 0.5% DMSO), and QStatin was diluted in the same
buffer. The samples were degassed by vacuum aspiration for 15 min prior to titration at 25°C. SmcR
(0.48 mM [in dimer]) in the syringe was titrated against QStatin (0.025 mM) in the reaction cell of VP-ITC
(Microcal Inc., Northampton, MA). To evaluate how QStatin affects the SmcR-DNA interaction, the duplex
DNAs of PvvpE, PflhF, and PVVMO6_03194 (sequences are in Table S4) were synthesized and dialyzed against
the buffer. SmcR (0.42 mM [in dimer]) was incubated with QStatin (molar ratio, 1:4) prior to titration
against each duplex DNA (0.02 mM). The mixture was stirred at 300 rpm, and the thermal power was
recorded every 10 s. The thermograms were then analyzed using the Origin package (version 7) supplied
with the instrument.

qRT-PCR. The V. vulnificus strains grown to an A600 of 0.25 were treated with 20 �M QStatin or 2%
DMSO and further incubated to the stationary phase (A600 � 5). Total RNA was then isolated using
RNAprotect bacterial reagent and an miRNeasy minikit (Qiagen, Valencia, CA). Synthesis of cDNA and
amplification of target genes were done using an iScript cDNA synthesis kit, iQ SYBR Green Supermix,
and an iCycler iQ qRT-PCR system (Bio-Rad Laboratories, Hercules, CA). The sequences of the primers
used are listed in Table S4. The relative expression levels of the genes were normalized to the expression
of the 16S rRNA gene (internal reference), as described previously (69).

Analysis of biofilm formation/dispersion. Overnight-cultured V. vulnificus strains were diluted with
V. fischeri minimal medium (70) containing 32.6 mM glycerol and either 20 �M QStatin or 0.04% DMSO.
The diluted cultures (200 �l) were transferred to polystyrene microtiter plates (Nunc, Roskilde, Denmark)
and incubated for the indicated times at 30°C to form biofilms, which were then quantitated as described
previously (38).

RNA sequencing and analysis. Total RNA was isolated from the biofilm developed as described
above, except it was incubated for 13 h in polystyrene 6-well plates (SPL, Seoul, South Korea). The RNAs
were further purified by removing DNA using TURBO DNase (Ambion, Austin, TX), and mRNA was
selectively enriched by depleting rRNA using a Ribo-Zero rRNA removal kit (Epicentre, Madison, WI).
Then, the cDNA library was constructed using a TruSeq Stranded mRNA Sample Prep kit (Illumina, San
Diego, CA). The quality of the cDNA libraries was evaluated using an Agilent 2100 Bioanalyzer and Agilent
DNA 1000 reagents (Agilent Technologies, Santa Clara, CA). Strand-specific single-ended 50-nucleotide
sequences were read from each cDNA library using HiSeq 2500 (Illumina). The raw sequencing reads
were analyzed using CLC Genomics workbench 5.5.1 (CLC Bio, Aarhus, Denmark) and mapped onto the
V. vulnificus MO6-24/O reference genome (GenBank accession numbers CP002469.1 and CP002470.1),
allowing up to two mismatches per read. The expression level of each gene was defined using a value
corresponding to the number of reads per kilobase of transcript per million mapped reads (RPKM), as
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described previously (71). Quantile-normalized RPKM values were then statistically analyzed by t tests to
identify the genes that were differentially expressed (greater than 2-fold change with a P value of �0.05)
from the DMSO-treated ΔsmcR mutant cells relative to the DMSO-treated WT cells. Genes with an RPKM
value of �3 were considered not to be expressed and were excluded from the analysis. Heat maps were
generated by the CIMminer program (72) using the RPKM-fold change for each gene in the test samples.
The mapping statistics for the sequencing reads and the RPKM values, fold change values, and P values
for entire genes under different conditions are shown in Data Set S1 in the supplemental material. CLC
Genomics workbench 5.5.1 software was used for a principal-component analysis of the whole-gene
expression profiles of the samples.

Brine shrimp challenge test. Cysts of A. franciscana (INVE Aquaculture, Salt Lake City, UT) were
axenically hatched and challenged as described elsewhere (17), with the following modifications.
Hatched nauplii were fed with autoclaved Aeromonas hydrophila strain KCTC 2358 at a concentration of
107 cells ml�1 of filtered and autoclaved artificial sea salt solution (Sigma-Aldrich) (40 g liter�1). The
nauplii were challenged with 1 � 104 CFU of V. vulnificus and 1 � 105 CFU of V. harveyi or V. parahae-
molyticus in the presence of 20 �M QStatin or 0.04% DMSO. In each experiment, at least four groups of
5 to 10 nauplii in 1 ml of the solution were transferred into each well of a 24-well plate and incubated
at 28°C with gentle shaking until observation under a light microscope (Leica MZ125, Leica Microsystems,
Inc., Switzerland) was performed.

Chemical synthesis of QStatin. Briefly, 4-bromothiophene-2-sulfonyl chloride (382 mg; 1.47 mM)
and triethylamine (202 �l; 1.47 mM) were added to a solution of pyrazole (50 mg; 0.74 mM)– ethanol
(10 ml). The reaction mixture was then refluxed for 6 h under a nitrogen atmosphere and cooled to room
temperature. After the mixture was concentrated under reduced pressure, the crude product was
extracted with methylene chloride (50 ml). The organic layer was then washed with brine, dried over
Mg2SO4, and concentrated. The crude material was purified by silica gel chromatography using 10% to
30% (vol/vol) ethyl acetate in hexane as the eluent to yield QStatin as a solid (215 mg; 75% yield). The
characteristics of the molecule were as follows: melting point, 112°C; 1H nuclear magnetic resonance
(1H-NMR) (500 MHz, CDCl3) 	 (ppm), 8.08 (dd, J � 2.8, 0.3 Hz, 1H), 7.79 (d, J � 1.2 Hz, 1H), 7.61 (d, J �
4.1 Hz, 1H), 7.09 (d, J � 4.1 Hz, 1H), and 6.44 (dd, J � 2.8, 1.6 Hz, 1H); 13C-NMR (126 MHz, CDCl3) 	 (ppm),
145.8, 141.4, 135.1, 134.5, 131.2, 127.3, and 109.4.

Statistical analysis. Statistical analyses were performed as indicated in the figure legends using
GraphPad Prism 6.0 software.

Accession number(s). The atomic coordinates and structure factors have been deposited in the
Protein Data Bank (http://www.pdb.org) under PDB ID code 5X3R. All raw transcriptome data have been
deposited in the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject) under accession
number PRJNA271541.
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FIG S4, PDF file, 0.3 MB.
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